Preparation of Nanoparicle of Papaya (Carica Papaya L. Var. Callina) Fruit Shakes by Using Ionic Gelation Methods

Main Article Content

Lilis Sugiarti (*) lilis_suwarno@yahoo.co.id
Rakhmi Hidayati
Imroatus Sholikah

(*) Corresponding Author

Abstract

Nanoparticles are drug delivery systems that can increase the effectiveness of active ingredients. Papaya fruit sap (Carica papaya L. var. Callina) is known to contain active compounds such as papain, flavonoids, and saponins that have antibacterial potential. This study aims to make and characterize nanoparticles from papaya fruit sap powder using ionic gelation method. Papaya gum powder was obtained through a drying process with the addition of sodium metabisulfite, then formulated into nanoparticles using chitosan and sodium tripolyphosphate (NaTPP). Characterization tests included percent transmittance (UV-Vis), particle size and zeta potential (PSA), and morphology (SEM). The results showed that the nanoparticles had an average particle size of 58.3 nm, a polydispersity index of 0.429 and a zeta potential value of +26.61 mV. The particle morphology showed irregular shape and agglomeration. This study proves that papaya fruit gum powder nanoparticles can be prepared by ionic gelation method and show good physicochemical characteristics.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lilis Sugiarti, Hidayati, R., & Sholikah, I. (2024). Preparation of Nanoparicle of Papaya (Carica Papaya L. Var. Callina) Fruit Shakes by Using Ionic Gelation Methods. Proceeding Cendekia International Conference Health and Technology, 3, 287–292. Retrieved from https://proceedings.centamaku.ac.id/article/view/203
Section
Articles

References

Abdassah, M. (2017). Nanoparticles with ionic gelation. Journal of Pharmacology, 15(1):45-52.

Abdelwahed, W., Degobert, G., Stainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. In Advanced Drug

Delivery Reviews, 58(15):1688-1713.

Anggraini, D., Susanti, E., & Saputra, N. (2020). Effectiveness of Papaya (Carica Papaya.L) Papain Cream Processed by Freeze Drying Method on Healing of Skin Thickening (Callus). Journal of Pharmacy, Science, and Health, 6(1):1-6.

Daulay, A. H., Masthura, & Pratiwi, A. (2022). Analysis of the effect of combustion temperature variations on the microstructure and silica content of cocoa shell ash (theobroma cacao) by SEM and XRD methods. JFT: Journal of Physics and its Applications, 9(2):89-98

Djulfikri, M. (2023). Standardization of specific and non-specific parameters of ethanol extract of itchy leaves (laportea decumana (Roxb.) Wedd) as raw material for standardized herbal medicines. Journal of Health Research Suara Forikes, 2(14):266-270.

Fitria, M., Saputra, D., & Revilla, G. (2014). Effect of papaya gum papain on granulation tissue formation in experimental rat burn wound healing. Andalas Health Journal, 3(1):73- 76.

Fuadah, L., Nugraha, D., & Yusuf, A. L. (2023). Test of antibacterial activity of papaya fruit sap granulation (Carica papaya L.) against staphylococcus aureus bacteria. Journal of Pharmacygenius, 2(2):113-118.

Fucinõs, C., Fucinõs, P., Míguez, M., Katime, I., Pastrana, L. M., & Ŕua, M. L. (2014). Temperature- and pH-sensitive nanohydrogels of poly(N-isopropylacrylamide) for food packaging applications: Modeling the swelling-collapse behavior. Journal Plos One, 9(2):1-15.

Giri, S. A., Ramadhani, N., Sani, F. K., Lestari, G., & Hernawan N. B. (2021). Formulation of chitosan nanoparticles of methanol extract of brown marine algae (sargassum hystrix) by ionic gelation method. Manuntung Scientific Journal, 7(1):92-99.

Hidayat, S. F., Mas'udah, M., & Santosa, S. (2023). Effect of solvent type and drying time in the preparation of papain enzyme from papaya fruit sap. Journal of Separation Technology, 9(3):279-285.

Huda, N., & Wahyuningsih, I. (2016)_. Characterization of self-nanoemulsifying drug delivery system (SNEDDS) of red fruit oil (Pandanus conoideus Lam.). Indonesian Journal of Pharmacy and Pharmaceutical Sciences, 3(2):49-57.

Kawashima, Y., Yamamoto, H., Takeuchi, H., & Kuno, Y. (2000). Mucoadhesive dl- lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. In Pharmaceutical Development and Technology, 5(1):77-85.

Maharani, P., Rizki, U., Purwanto, E., Kadek Bagiana, I. (2022). Optimization of Na-alginate and Ca-chloride in nanoparticles of fucoidan purified extract from brown seaweed (Sargassum Polycystum). In Pharmacy Medical Journal, 5(2):38-45.

Mardliyati, E., Muttaqien, S. El, Damai, D., & Setyawati, R. (2012). Synthesis of chitosan- trypolyphosphate nanoparticles by ionic gelation method: effect of concentration and volume ratio on particle characteristics. Journal of Materials Science and Technology Scientific Meeting Proceedings, 90-93.

Martunis. (2012). Effect of temperature and drying time on quantity and quality of potato starch of granola variety. Journal of Indonesian Agricultural Technology and Industry, 4(3):26-30.

Milind, P. (2011). Basketful benefits of papaya. In International Reseach Journal Pharmacy,

(7):6-12.

Mizana, A. (2020). Formulation and characterization of parijoto fruit (Medinilla speciosa blume) nanoparticles using ultrasonication method. Thesis. Semarang: Ngudi Waluyo University Pharmacy Study Program.

Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles-A Review. In Tropical Journal of Pharmaceutical Research, 5(I):561-573.

Napsah, (2014). Preparation of chitosan-tpp/ethanol extract of crown of god fruit flesh (Phaleriamacrocarpa (Scheff) Boerl) nanoparticles by ionic gelation method. Journal of Pharmaceutical Science and Community, 11(1):7-12.

Ningsih, N., Yasni, S., & Yuliani, S. (2017). Synthesis of red mangosteen peel extract nanoparticles and study of functional properties of encapsulated products. Journal of Food Technology and Industry, 28(1):27-35.

Nurul, E., & Santoso, J. (2025). Formulation and characterization of chitosan nanoparticles containing bay leaf extract (Syzygium polyanthum). Pharmaceutics Magazine, 10(1):57-68.

Pertiwi, I., Nurul, Z. N., Hamid, A. H., Silalahi, K. H. W., & Wathoni, N. (2018). Chitosan as excipient in novel drug delivery system. Jurnal Farmaka, 16(3):310-321.

Rahma, F. D., Syafei, D., & Purnama, S. C. (2021). Nanoparticle characterization of 70% ethanol extract of Jatropha Curcas L. leaves by ionic gelation method. In Higea Pharmacy Journal, 13(1):1-7.

Rahmi, T. A., & Sari, E. C. Department of Chemistry Faculty of Mathematics and Natural Sciences Surabaya State University Jl Ketintang, (2014). Encapsulation of pyrazinamide used by alginate-chitosan with variation concentration of adding surfactant tween 80. Journal of Chemistry, 3(3):27-33.

Sari, N. K. Y., & Sumadewi, N. L. U. (2021). Antifungal activity of white frangipani flower (Plumeria acuminata) saponins on Candida albicans ATCC 10231. Journal of Biological Sciences, 8(1):74-80.

Setiawan, A., Widiana, D. R., Priyambodo, D., & Nugroho, N. A. (2015). Synthesis and characteristics of chitosan microparticles with ionic gelation modification. Journal of Fisheries Sciences), 17(2):90-95.

Sreeram, K. J., Nidhin, M., Indumathy, R., & Nair, B. U.(2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31(1):93-96.

Wahyu, A. L., Rizki, E. P. U. (2021). Nanoparticle formulation of hibiscus leaf extract (hibiscus rosa- sinensis L.). Journal of Biointerphases. 1(1):1-8.

Yunita, Y., Nurlina, N., & Syahbanu, I. (2020). Synthesis of zinc oxide (ZnO) nanoparticles with the addition of chlorophyll extract as capping agent. Journal Positron, 10(2):123-130.